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In a recent paper (5], Glassey proposed a special-purpose algorithm for
the computation of equilibrium prices in a single-commodity spatial econmomic
model. The model was formulated as & convex quadratic program with a
separable objective function and with certain transshipment-type constraints.
Spatial equilibrium models of this type have been discussed intensively in
the literature. (See Samuelson [15], Takayama and Judge [16] and more
recently, Polito [14].) Unfortunately, the original algorithm proposed by
Glassey fails to work in certain caael.*

The essential purpose of this paper is to present an efficient special-
purpose algorithm for solving the quadratic program arising from the
lférmntioud economic equilibrium model. The proposed algorithm is based »
ou an efficient implementation procedure of the parametric principal pivoting
algorithm for solving a parametric linear complementarity problem. (See Cottle
[2] for the description of the original version of the latter algorithm and
Pang [9] for that of its implementation procedure.) This latter algorithm
has been found very useful in various other contexts, seevnneko [9,10],
Pang [11,12] and Pang, Kaneko and Hallman [13].

The reformulation of the quadratic program as a linear complementarity
problem to be solved by the parametric principal pivoting algorithm leads
to the study of an interesting matrix associated with a simple digraph
having weights on the nodes. Several basic properties of such a matrix are
derived. These properties are extremely useful in the development of the
specialized algorithm for solving the spatial equilibrium model.

The organization of the paper is as follows. The next section consists

* In a private communication [ 6 ], Glassey informed us that the statement
of the algorithm was incomplete.
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of two parts. In the first part, we review the formulation of the spatial
equilibrium model addressed by Glassey and derive from this formulation an
equivalent linear complementarity problem with a very special matrix which
is intimately related to the underlying network structure of the model.
In the second part, we review the parametric principal pivoting algoritim
and its implementation procedure. The third section presents some basic
properties of the special matrix appearing in the linear comp lementarity
formulation of the economic model. In the fourth section, we specialize
the parametric principal pivoting algorithm to solve this linear complementarity
problem and show how the algorithm can be greatly simplified by exploiting
the structure of the matrix. In the fifth section, we report some computational
results with the application of the specialized algorithm in solving some
randomly generated problems of considerably large size and draw some concluding
Temarks. Finally, in an appendix, we point out how Glassey's algorithm can

sometimes fail to find the equilibrium prices and present a counterexample.
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2.  PRELDMINARTES

2.1 Model Formulation. The problem addressed by Glassey [5] is to find
a set of equilibrium prices under a certain spatial model. Mathematically,

it amounts to finding pa. b W and x g which satisfy for all ag =1,...,§

Py = % " P (1a)
N N
v, " 351 g " 'z-:‘ %8 (1b)
Py * cap - P >0 (1e)
Zyg 20 (1d)
and
‘ag (pa + cﬂB -ps) = 0, (le)

Here N denotes the total number of regions under considerationm, p - dc‘notu
the desired equilibrium price in the a-th regiom, is the net impovt in

that region, X, 8 is the export from region a to region B and is referred to
as a flow variable, a - is the (given) equilibrium price in the absence of

imports and exports, ba is a given positive number which is related to the

elasticity of supply and demand, finally, e‘" is the nonnegative unit
transportation cost from region & to vegion § satisfying the triangle inequality

L 5°ay +°Yﬂ for all @, § and v .

Incidentally, the above model is a simplification of those




4
discussed in [16]. Due to its simplicity, efficient special-purpose algorithm
i can be developed. As noted by Glassey, problem (1) forms the Kuhmn-Tucker

conditions for the (convex) quadratic program

N N
wiainize T & b2 +’z' Cus ¥ap - %’ Pubject to (1b) and (14).

Notice that by (1b), we may assume, with no loss of generality, that
i 0 for all @. Using (1a) and (1b) to eliminate the variables Py and ya,

we may easily cast problem (1) as the linear complementarity problem: find

z €D Such chae

q+M2 20, z2>0 and z3(q+ Mz) = 0. (2a)

Here q = (qk) and z = (zk) with k denoting the ordered pair (a,8) of distinct
indices o and § are N(N-1)-vectors whose k-components are defined as

, q‘k"a-‘a+caa snd ‘k-‘ap‘ (2b)

| Moreover, M = (m, ) with k and { denoting certsin ordered pairs of distinct .
5 indices is the N(N-1) x N(N-1) matrix whose (k,L)-entry is defined as

| rba+bs ifk =L = (a,8)
% : (b + by) 1f k = (a,8) and L = (8,a)
bﬂ 1fk= (a,8), L = (v,f) and a b v (2¢)
oy = |
b, ifk=(x8), 4= (a,y) and § #
by 1f k= (a,8), L » (B,y) and o # y
E | 'ba if k = (a,8), L‘(Y.C)ND*Y
1 LO otherwise.
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The matrix M is an example of an arc-arc weighted adjacency matrix.
Formally, given a simple digraph G = (V,A), with V and A denoting the sets

of nodes and (directed) arcs of the graph respectively, and a set of positive

scalars {balaéu Tepresenting weights on the nodes, the arc-arc weighted

e ——————

adjacency matrix of this weighted graph G is the real square matrix M such
that, associated with each pair of arcs k and £ in A, is the entry L defined

as in (2c). We point out that the digraph arising from the spatial economic ‘

equil brium model is complete. j v
At this point, we should emphasize that the entire development of this |

paper, including all the results and the proposed algorithm for the equilibrium

model, does not depend on the campleteness of the simple digraph arising from

the model. Consequently, our approach is applicable not only to the one

treated by Glassey, but as well as to its generalization where the underlying

digraph is arbitrary and is not necessarily complete. Nevertheless, in

the remainder of this paper we continue to assume that the digraph arising
from the equilibrium model i{s complete,

The proposition below identifies the first property of am arc-arc

SR T

weighted adjacency matrix,
Proposition 1. Let G = (V,A) be a simple (weighted) digraph with M denoting

its arc-arc weighted adjacency matrix. Then M is symmetric and positive { 3

semi-definite.
Proof. The symmetry is obvious. To show that M is positive semi-definite,

let z = ('k)ke g be an arbitrary vector. By an easy calculation, we may deduce

zrnz- z brv:

a€V

where
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with 'a and sa denoting the sets of predecessors and successors of o
respectively. Q.E.D.

The proof of the proposition suggests that am arc-arc weighted adjacency
matrix may be related to the m;dc-arc incidence matrix of the graph. This
relationship is made explicit in the next proposition whose proof is easy and
thus omitted.

Proposition 2. Let G and M be as in Proposition 1. If A is the node-arc

incidence matrix of the digraph G, then

M=aTna
where D is the diagonal matrix whose diagonal entries are the weights ba
of the nodes.

As we shall demonstrate later, M is not always nonsingular, or

equivalently, positive definite.

2.2, Parametric Principal Pivoting. As indicated in the introduction,
we plan to solve the linear complementarity problem (2) by the parametric
principal pivoting algorithm. For this purpose, we briefly review this
algorithm and its implementation procedure.

Formally, for given n-vectors p and q with p > 0 and nxn matrix N,

the parametric linear complementarity problem is to find, for each value

of the parameter A lying in some interval [)A,=), an n-vector z satisfying

qQ+Xp+Mz >0, 230 and z (qQ+Ap+Mz) =0. (3)
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Algorithm 1. Parametric Principal Pivoting Algorithm.
Step 0. (Initialization) Let the initial canonical system be given by

Ww=gq+Ap +M

where q + Ap > 0 for sufficiently large values of A. Put j = 0, )‘0 =@, i
Step 1. (Ratio test) If p < O (this cammot oceur initially), let
(w(A),2(A)) = (9 + Ap, 0) for A lying in the interval [L,xj] and terminate,

Otherwise, determine the critical index r by

= - = - . 1
ar 7" /ey =max {-a,/p; 2 py > 0]

Put (w(A),z(A)) = (qQ + Ap,0) on txj+,,lj]-

Step 2. (1 x 1 Diagonal pivet) If m_. =0, go to Step 3. Otherwise,
pivot on m.. and let w,z,p,q and M correspond to the Tesulting system.
Replace j with j+1 and go to Step 1.

Step 3. (2x2 Block pivot) If m,_ > O for all i, redefine Aby =2

ir = J+1

and terminate. The problem (3) has no solution for A < A. Otherwise, define

the critical index s by

1 Psqr) ( Pidry /-1
-——(q_ - = min {[q --——)(—-):m <o) .
n“( s pr i Pr mir ir

Perform a pivot operation successively on " and By Let w,2,q,p and ¥

correspond to the resulting system. Replace j with J+1 and go to Step 1.

We refer to Cottle [1] and Graves [7] for a d.t:aii.cd discussion of the
theory of pivotal algebra. Under the cundition that the initial M 4g
a P-matrix (i.e. has positive principal minors) or is positive semi-definite,
the algorithm above will compute a solution funmction z(A) to the parametric
linear complementarity problem (3) in a finite number of steps, provided that
some appropriate tie-breaking rule, like the one described in [7), has been
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incorporated in the algorithm. (See [2].)

The 2x 2 block pivots described in Step 3 of the Algorithm are designed

specially for positive semi-definite matrices. They are redundant if

M is a P-matrix. In[11], the first author has proposed an efficient
implementation procedure for actually carrying out the 1x1 diagonal pivots.
The procedure is rephrased in the algorithm below.

Algorithm 2. The Parametric Principal Pivoting Algorithm Using only
Diagonal Pivots.

Step 0. Let X ;g LetJ=fand I ={1,...,n].

) G DY
Step 1. Solve* the system of linear equations for (qJ, P J) :
M;5(a5.05) = (qJ.pJ)

and compute

@pepp) = (ap.pp) - W [0 )).
Step 2. If P < 0 and P; 2 0, set (z(x))I = 0 and (z(A))J- “Hy = pr

for all A < ).01 4 and terminate. Otherwise determine the new critical value

x“w = max {max { - qi/pi :p, >0, 1€1}, max { - qj/Pj t Py <0, j€I}}
and let k be a maximizing index. Put (2(A)); = 0 and (z(A)); = - EJ - 1EJ
for all A in the interval [1m, Aold]' 1f Apew S A, terminate. Otherwise

set 1ol.d - Lm.

* If A is an nxm matrix and I and J are subsets of {1,...,n} and {1,...,m}
respectively, then by LI 7 Ve mean the submatrix of A whose rows and columms

are indexed by I and J respectively. Similarly, if q is an n-vector, then
by 9y, We mean the subvector of q whose components are indexed by I.

ISP S—




Step 3. Update the index sets I and J:
Jo1q Y {x} £k €34

Jold \{k} ifk € Jold

and I = {1,...,n}\Jm. Go to Step 1.

We point out three remarks. First, the parametric principal pivoting
algorithm can be easily used to solve a linear complementarity problem
of the form (2a). In fact, it suffices to choose A = 0. Second, Algorithm
2 is also applicable when M is positive semi-definite, provided
that it is not necessary to perform the 2x2 block pivots. As a matter
of fact, we shall show in Section 4 that this is indeed the case when the
linear complementarity problem (2) is solved by Algorithm 1. Finally, if
a linear complementarity problem with a positive semi-definite matrix
is solved by Algorithm 1 and if all the pivots are 1x 1 diagonal, then

the algorithm must terminate with a solution to the problem.

o r— R 2 TR R g e - - - S
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3. BASIC PROPERTIES OF AN ARC-ARC WEIGHTED ADJACENCY MATRIX
In this section, we establish some basic properties of am arc-arc
weighted adjacency matrix M associated with a general simple digraph having
weights on its nodes. Our objectives are, first, to characterize the

nonsingularity of an arbitrary principal submatrix of M in terms of the

structure of the "associated subgraph" of the submatrix, and them, to show - §
how the solution of the various systems of linear equations required in
Step 1 of Algorithm 2 can be achieved by identifying the decendents
of each node in the associated subgraph of MJJ.
Noticing that each principal submatrix of an arc-arc weighted adjacency
matrix is itself amn arc-arc weighted adjacency matrix associated with an
obvious subgraph, we shall develop the results in terms of an arc-arc weighted
adjacency matrix M defined with respect to a fixed but arbitrary weighted

digraph G with the understanding that these results apply readily to each

of the principal submatrices of possibly another arc-arc weighted adjacency
matrix. In particular, this digraph G is not necessarily the one arising
from the spatial equilibrium model discussed in the last section.

Recall that a cycle in a digraph is a sequence of arcs comnecting a
node to itself, The directions of the arcs are irrelevant in the cycle. A
minimal cycle is one which contains the minimum aumber of arcs. It is
important to observe that if an arc is incident to two nodes in a minimal

cycle, then the arc must be one of those in the cycle. Throughout the

paper, all digraphs are simple.
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Figure 1: Examples of cycle

Figure 2: The outer cycle is not minimal

B I

Proposition 3. If the digraph G contains a cycle, then its associated
arc-arc weighted adjacency matrix M is singular.
Proof. It suffices to exhibit a nonzero vector v such that Mv = 0. Choose

a minimal cycle in G and let A.I, Az,...,A.L be the arcs in the cycle. Fix

the direction of ome of these arcs, say A’. Define a vector v = (vk) as

follows
r-1 :I.fk-A1 for some i and if A,.nutlA1 are oriented
i ‘ in the same direction
: v, = { -1 if k = A, for some 1 and {f A, and A, ave oriented
in the opposite direction
0 otherwise.




12

We claim that Mv = 0. Consider a specific component, say (Mv) X with { denoting

a certain arc. If the arc { is not comnected to any node in the minimal cycle,
then obviously (uv)L = 0. On the other hand, if { is incident to one single
node in the cycle, say node «, then the {-row of M is given by

A' ‘2 LN ] ‘t LE N ] t' L R AL 1 %

[ e e 0 0 see .'ba eese .zb eoe eese ]

where A: and A:' are the two arcs in the cycle which are incident to node «
and where s,(sz) is equal to +! depending on whether the arcs 4 and At(At')

are oriented in the opposite or the same direction. If both pairs of arcs

(4 and Ac) and ({4 and Ac') are oriented in the same way (i.e., if s, = s

1 2),
then the arcs A_ and A_, must be oriented in the opposite direction ({i.e.,

then e vA ); on the other hand, if the two pairs of arcs ({4 and At)
t 4

and (4 and At') are oriented differently (i.e., if 8, = - sz), then At and Ac'

must be oriented in the same direction (i.e., then v

A A ). Consequently,

t =
in either case, we have

(m)c = (slvA sz )b a0,

Finally, {f { is incident to two nodes in the cycle, then it must coincide
with one of the L arcs by minimality of the cycle. Let's suppose
L= A: = (o,8). Then the L-row of M is given by

A1 Az eee At cee Au1 ces Ay "'ALl LL

2
E ooe @ 0 ”'(ba+b5) ees 8 b ...lzhB 10+ 0 0 «cc ]
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where A and A
u u

are the two arcs adjacent to Ac in the cycle and where ’1(’2)
1 2

is equal to +1 depending on whether Ac and Au (Au ) are oriented in the
| L

opposite or the same direction. By using a similar argument, we may deduce

(uv)L = (ba + b')vA: + '1bavA + lzb’V‘ =0,
b b

Consequently, M is in fact singular. Q.E.D.

Given a nonsingular principal submatrix M” of a square matrix M, there

exists a permutation matrix P such that

My 4,

P MP= .

o1 M

-1
The Schur complement of M,, in M is the macrix My, - M, M, M,,. Moreover,

the Schur determinental formula (see Cottle [3] e.g.) is

det M = det M,, x det (4, - ‘121"1.:“12) ;

The next proposition is a partial converse of the last ome.
Broposition 4. If the digraph G i{s a tree, then the arc-arc weighted
adjacency matrix M is nonsingular.
Proof. We use induction on n(> 2) the number of nodes in G. The assertion
is obvious for n = 2. Suppose that it is true for a tree with n nodes.

Consider a tree G with n + 1 nodes. Since G is a tree, it contains an end




:
|
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1%
node, say ao. Let A be the only arc in G incident to o and let 8§ be the other
end point of the arc A. Let G' be the subtree obtained from G by deleting
the node o and the arc A. Assign the same set of weights to all nodes

in G' except for the node § where we assign the weight l/(h‘;1 + bﬂ.l)' Let

M' be the arc-arc weighted adjacency matrix obtained from the (weighted)
digraph G'. By induction hypothesis, M' is nonsingular. We now show that

M' is precisely the Schur complement of the diagonal entry uAA in the

original matrix M. With no loss of generality, we may assume that

IHAA HAZ
M=
\%A M2

where MAZ is given by

= [0 ece 0 b e b -b cee * b e
- I Tl e B

with the plus (minus) bB appearing in those arcs (i.e., columms) which

are incident to the node § and oriented in the opposite (same) direction

as the arc A. Moreover, the principal submatrix of uzz corresponding to

those arcs which are incident to the node 8 is given by

by [‘_l_i] +I
-E E
where E {3 the matrix of 1's and wvhere £ is the diagonal matrix whose

diagonal entries are the weights of those nodes (except for a) which are

adjacent to the node §. The same principal submatrix of -nnu;lnn is

given by
-bL E | -E
%+%[¢I J.
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In fact, all entries of the matrix -MZIM;:_M!Z are zero except for those of

this principal submatrix. It then follows that all entries of the Schur

-1
comp lement MZZ.HZIMAAHIZ are the same as the corresponding ones of H’ZZ’ éxcept
for those in the principal submatrix which is equal to

b E | -E E -E
% 5 +5, Y= e =z .
«a*% |2 | £ by +by |2 | ®

-1
It is now obvious that sz - HZ!HAAH!Z = M' ., Since both HAA and its

Schur complement are nonsingular, it follows from the Schur determinental
formula that so is M. This completes the inductive step and the proof. Q.E.D.
Remark. The above two propositioms can also be proved by using Proposition 2
and the tree-property of the basis matrix of a linear transhipment problem

(see Dantzig [4]).
Corollary 5. If the digraph G is a forest, then the arc-arc weighted

adjacency matrix M is nonsingular.
Proof: It is sufficient to observe that such a matrix is block diagonal
with each diagonal block corresponding to a tree. The corollary then

follows immediately from Proposition 4. Q. E. D.

Corollary 6. Let M be the arc-arc weighted adjacency matrix associated
with the (weighted) tree G. Then

-1
det M (IlbY) x (:bY )

where both the product and the summation range over all the nodes in G.
Proof. We use induction on the number n of nodes in G. The formula is
certainly correct for n = 2, Suppose that it is true for a tree with n nodes.

Consider now a tree G with n+! nodes., Using the same notations as in the

proof of Proposition 4, we have by the Schur determinental formula,

Lh
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det M = (ba + bB) x det M'

Now the induction hypothesis implies that

-1 =1 -1
detM'= I b x1/(b." +b y. % B b
yha,8 ¥ " ally Y

From these two equatioms, the desired formula for det M follows veadily.

Q. E. D.

Combining Corollary 5 ari Proposition 3. we aobtain the theorem below
which characterizes the nonsingilarity of an arc-arc weighted ad jacency
matrix associsted with a (weighted) digraph.

Theorem 7. Let G be a digraph with positive weights on the nodes. Then
the arc-arc weighted adjacency matrix is nonsingular if and only if the
graph G is a forest.

Let A = («,3) be a fixed but arbitrary arc in a tree G. We say
that a node y which is different from o and B, is on level 1 with respect to
the arc A if y is incident to A. Inductively, given a node Y not on level
k-2, we say that it is on level k with respect to the arc A if it is
adjacent to ome of the nodes on level k - 1. The nodes « and § are considered

to be on level 0. Given two nodes Y, and Y, on levels k‘ and kz respectively

w:l.t:hlv:1 <k2. we say t:hn:yz is ¢g¢_s_ggg_:_o£y' if the nodes in the
unique path connecting node Y, to node Y, are on strictly descending levels.

By convention, we consider a node as a descendent of itself. We

shall denote by 1)Y the set of descendents of the node y. Notice that

D, and D’ partition the set of nodes in G. We call the number £ b;]'
¢€D
Y

B d it wadh b ciu oL .



modified weight of the node y, and denote it by EY %

@ A S @ &——————— level O

Figure 3: Different levels in a tree
Note: The node Y3 is a decendent of

Y1 but not of Y% °

The two propositions below are fundamental to the solution of a system
of linear equations involving an arc-arc weighted adjacency matrix.
Proposition 3. Let G be a weighted tree wich.u being its arc-arc weighted
adjacency matrix. Let A = («,8) be any arc in G. Let MIA be the A-column
of M with the disgonal entry deleted and let M' be the principal submatrix

of M with both the A-row and the A-column deleted. Then the vector (u')"uu

is given by the following: if k # A is the arc (8,y) with yina. then
Eylnn 1f k and A are oriented in the opposite direction

=1
(') Mo

-SY/sun if k and A are oriented in the same direction
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where &
ba if y € D,
sum =
b £ "
8 if vy GDa

Proof. The matrix M' is block diagonal with the two diagonal blocks u;

and ui being the principal submatrices of M' whose arcs are incident to nodes
in D' and l)a respectively. Due to this block diagonal structure of M', we

may, with no loss of generality, assume that the arc A is incident to an

end node, say 8; or in other words, we assume that ué is vacuous. Let G'

be the subtree obtained from G by deleting the arc A and the node B. We
may further assume that M' has the form

H'

L}
¥ 12

"
M =

b

where M} 6 is the principal submatrix of M' whose arcs are incident to a.

1

With respect to this partitioning, we may write

vhere M{A is a vector of plus and minus ones such that m;A)L = 1(=1) if the

arcs L and A are oriented in the opposite (same) direction. If we write
(M')-IH.I'_A '(‘1) according. to the above partitioning of M', we may easily deduce

%

[] ' (] -1 '
M3y - M (M55) " M%) = by, .




CyE

AT

19
By the proof of Proposition 4 and an inductive argument, it is not difficult

to show that the Schur complement (M;' - M;Z(Miz)"ui1) is the arc-arc

weighted adjacency matrix associated with the subtree G" obtained from G'
by deleting all the arcs not incidemt to the node a and all the nodes not
adjacent to @. The weight of a node ¢ in the subtree G" is equal to (Eo)"
if ¢ # o and equal :oba if g = @. In fact, this Schur complement is

given explicitly by
[ V1 v 3=t - ' 1 4T
Mg " M) My, =T + b, (M)

where £ is the diagonal matrix whose diagonal entries are the inverses of the

modified weights of the nodes adjacent to «a in G". According to Sherman-
Morrison-Woodbury formula (see Householder [8, p. 124] e.g.), we obtain

7S R, T
I M, 00T

x, =b
(] T "‘
bamlA) by u;

1 o M,

1A

which gives
x, =T ' /6
1 A" "a *
This establishes the desired formula for ((w)"u1 )y Provided that k is

incident to node @, To establish the formula for k not incident to a, we
evaluate x,. It is not difficult to see that néz is again a block diagonal
matrix with each diagonal block being the principal submatrix whose arcs

are incident to nodes in D, for some node G # a in the tree G". Again we may
assume that Hiz consists of just onme single block with all the arcs incident

to a certain descendent of a specific note @« in G". We then have




Myp%y = - Myyxy = - ba‘au(“i&')

0
where A' is the arc connecting « and ¢, say A' = (a,g), and uh, is defined

in a fashion -mn:eou;A above. By decomposing x, -( 221) with )

%22

corresponding to those arcs incident to the node ¢ and using the same

argument, we may easily deduce

v" (] 'y
X)) = " Xae* &) My, /0,

g where £' is the diagonal matrix whose diagonal entries are the inverses of
the modified weights of the nodes adjacent to ¢g. Substituting X into the
above expression for X9 immediately yields the desired formula for

((M')"'Mu)k for k incident to o. The proof of the proposition can now

be completed by repeatedly using the above argument to all branches of
the tree G. Q. E. D.

Proposition 9. Let c,u,A,n1 A and M' be as in Proposition 8. Then

Tognty ok 3! o (g 3"t

Proof. To simplify the notations, we assume, as we did earlier, that
the arc A is incident to the end node B. Then by Corollary 6 sad the

Schur determinental formula, we have
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. -b’+(5,)'1

as desired. Q. E. D.

Using the same notations as in Proposition 8, we consider the solution
of the system of linear equations Mx = d for some given vector d. We may 1
assume with no loss of generality that M' is a leading principal submatrix

of M. Partitioning the vectors x and d accordingly we may write

M Hm x' d'
., 4 M g
: My, aA |\ *a A :’
which implies
| | SR TRA ool
and
x'« ) Tar - (n')"nu::A . (4b)

Combined with Propositions 8 and 9, these latter two formulas show how the

; : two vectors x and 04')'1d' can be efficiently computed from each other. 1In
fact, suppose that (M')~'d' is known, then Proposition 8 shows that mu)r(u')"
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can be obtained by identifying the descendents of each node. Together
with Proposition 9, formula (4a) yields the component X, readily. Substituting
x, aud using Proposition 8 again, we may easily compute x' from (4b). Conversely,

if x is known, then (u’)”’d' can be obtained readily from (4b) as well.
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4. SPECIALIZATION OF THE PARAMETRIC PRINCIPAL PIVOTING ALGORITHM

In this section, we specialize the parametric principal pivoting
algorithm to solve the linear complementarity problem (2) arising from the
spatial equilibrium model. Our purposes are (1) to show that the problem
can be solved by performing the 1x 1 diagonal pivots exclusively and (2) to
derive from this result and those established in the last section an efficient
specialized algorithm for solving the problem. To achieve these, we first
state two preliminary results having to do with the application of the
parametric principal pivoting algorithm for solving a general parametric
linear complementarity problem with a symmetric positive semi-definite matrix,
Lemna 10. Let M be any symmetric positive semi-definite matrix. Consider
the solution of the parametric linear complementarity problem (3) by
Algorithm 1. Let J denote the index set of the basic z-variables at each
iteration. Then MJJ is nonsingular. Moreover, if a 2x2 block pivot occurs
at a certain iteration and if r and s are the two critical indices obtained in
Steps 1 and 3 of the algorithm, then r€J and s €J.

| The two assertions contained in this lemma are rather well-known in
the theory of pivotal algebra. Their proofs are thus omitted. (The
authors are grateful to Professor I. Kaneko for pointing out this fact.)
Corollary 11. Let I be the index set of the currently nonbasic z-variables.
1f the maximum ratio in Step 1 of Algorithm 1 does not occur at the
nonbasic index i €I, then the variable z, can not become basic at the next
pivot.
Proof. Under the given assumption, the only possible way for z g become
basic is for i equal to the critical index s. But Lemma 10 asserts that this

is impossible. Q. E. D.
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With these two general results, we proceed to solve the linear
complementarity problem (2). Recall that the lower limit A of the parameter A
is zero. Combining Lemms 10 with Theorem 7, we obtain
Theorem 12. Throughout the solution process, the set of basic flow variables
can not contain a cycle.

In [4), Glassey showed that a solution to (1) can be found which J
contains no transshipment of flows. The theorem below extends this result.

Theorem 13, Let the parametric vector p be chosen such that all components i
are equal. Then throughout the solution process, there is no transshipment
of flows.

We need three lemmas to establish the theorem. From now on, we let
the vector p be chosen as stated in the theorem.
Lemma 14. Let J be the index set of the currently basic flow variables.

Suppose that k = («,8) €J. Then the nonbasic variable zL with 4L = (8,a)

can not become basic at the next iterationm.

Proof. Notice that Theorem 12 implies that L £J. The Ll-component of

the current ¢-vector before the next pivot is given by

It is easy to verify that

-1 ifj=k

-1
™, My =
0 otherwise . 3

Therefore, we have

qL-qL'qu.caa +cs“20. |

T .
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Hence, according to Corollary 11 and the termination criteria, the

variable zL can not become basic at the next iteration. Q. E. D.

Lemma 15, Let J be as in Lemma 14. Suppose that k, = (@,8) and

and z

k, = (a,y) with p # Y sTe in J. Then the nonbasic variables z 3

Y 2
where {.1 = (B,y) and {'2 = (yY,f) can not become basic at the next iteration.

Proof. Notice that Theorem 12 implies that 4, £J and 1, £J. The

Ll -component of the current q-vector is given by

L -1
T “L,J(“JJ) 9y -

It is not difficult to show that (cf. the proof of Proposition 3 e.g.)

-1 if §j = k,

sl o 1 if j=k
(ML‘J‘HJJ‘)J .
0 otherwise.

Consequently, we have

T, Tt (q“t # cl“z) " Cap* %py " Cay 20

where the last inequality follows from the triangle inequality of the
transportation costs. Hence according to Corollary 11 and the termination

criteria, the variable z L. can mot become basic at the next iteration.
1

Similarly, we may establish the same conclusion for z, - Q. E. D.
2

— o - e —— e cn—a | T
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Lemma 16. Let J be as in Lemma 14. Suppose that J contains no

—

transshipment of flows, If the arc 4 is such that JU{ 1]} contains a cycle,
then the nonbasic variable zy can not become basic at the next iterationm.
In fact, the {-component of the current q-vector is nonnegative.

Proof. Theorem 12 implies that J contains no cycle and that L £J. Suppose

thet the cycle in JU {4 ] contains an even number of arcs. By the above
two lemmas, we may assume that this number is at least four., Notice that &4
must be one of these arcs and that there are precisely two arcs adjacent
to each arc in the cycle. Let 4L = (8,y) and let the two arcs adjacent
to £ be k, = (31,5,) and kz = (02,62). Because of the even number, there ;
are two cases: (B8 = ¢'.|r1 and y = 62) or (y =« |

and 8 = § Consider the

1 2"
first case, namely B = a, and y = 62 (cf. Figure 4). The {-components of

the current q- and p-vector are given by

5"“1/ /
1
\ k 0
0(___2./a

2
Y =38,

4

Ok'_—\o

—

Figure 4. An even cycle with no transshipment

B e
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U= MMMy e ppme, oM Mip;.
By the proof of Proposition 3, ome can easily deduce that

0 if j is not in the cycle

(nux;}) {1 1f § ts in the cycle and oriented in the
! opposite direction as ¢

-1 if § is in the cycle and oriented in the
same direction as { .

From this and an easy calculation, we may deduce

it-fcj-fci andSL-O

where the first and second sums in the expression for QL range over those

arcs in the cycle which are oriented in the same and opposite directions

as { respectively. Notice that 5& = 0 follows from the fact that the

cycle contains an even number of arcs. Consequently, according to the

ratio test in Step 1| of Algorithm 1 and Corollary 11, z, will not become

basic at the next pivot. Moreover, we must have EL > 0 because the non-

negativity of the component il. + M-’L is maintained throughout the algorithm.
Consider the second case, namely y = o and § = 62 (cf. Figure 5). By

the same token, we may similarly deduce

q,=ZC¢,-C¢
&JJ i"

where the two summations are ranging over the same sets of arcs as before.

By the triangle inequality, it follows that
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/
Pl

&

By
g

Figure 5. An even cycle with transshipment

i{‘ > i:.' 20, vhere L' = (a,,8,). The last inequality follows from the
first case. Consequently, the variable z& can not become basic at the
next pivot. Similarly, we may establish the same assertion in the case where

the cycle is odd. Q. E. D.

Proof of Theorem 13. We use induction on the number of iterations. The
assertion is obviously true at the first iteratim. Suppose that it is true
after t iterations and the algorithm is entering its (t + 1)st iteration.
Let J be the index set of the currently basic flow variables. By induction
hypothesis J contains no transshipment of flows. Moreover, by Theorem 12, J

contains no cycle as well, It suffices to show if k = (a,8) €J, then all

variables z, with L = (8,y) or L = (y,a) can not become basic at the next
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pivot. To be specific, we let £ = (8,y). By Lemma 14, we may assume that
Y # @. Moreover, by Lemma 15, we may assume that { = (a,y) € J. Finally
by Lemma 16, we may assume that JU {4 ] contains no cycle as well. The

current i- and {-components of the p-vector are given by

b = - e = £ -1

Py =0y ~ MMy @Bt MNP,
Subtracting the two equations gives

- B i -1

Py =Py = (M - M M0,

= -‘ =
M MyaPs = Py -

Similarly, we may deduce

Hence, it follows that

Suppose that p, < 0. If the maximum ratio occurs at the arc 4 such

that - a&lﬁ" > 0, then we have

VSR EVY

so that ii +A\p 4 <0 for nonnegative values of A. But this contradicts
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the fact that ‘31 + Ap ; 18 kept nonnegative throughout the algorithm.
Therefore, if 51 S0, then either the algorithm terminates with the
arc { remaining nombasic or else the maximum ratio cammot occur at the
arc {. In either case, the theorem is proved.

Suppose now 51 > 0. Then we have

Now, if the left-hand term is nonnegative, then so is Ei which then implies
that iL > 0. In this case the variable z, can not become basic
in the next iteration. On the other hand, if the left-hand term is

negative, then we would have

unless SL < 0. Comsequently, the maximum ratio will not occur at the

arc 4. The desired conclusion therefore follows from Corollary 11.

Q. E. D.

We may now state and prove our principal result.
Theorem 17. Let the parametric vector p be chosen to be the vector of
ones. Then throughout the solution process, all pivots are 1x1 diagonal,
In other words, all the diagonal pivot entries are nonzero.
Proof. We use induction on the number of pivot iterations. The assertion
is certainly true at the first pivot because all diagonal entries of M are
positive. Suppose that the assertion is true for t iterations and the

algorithm is entering its (t + 1)st iteration. Let J be the index set of




3

basic flow variables at the end of the t-th iteratiom. Suppose now that the
maximum ratio occurs at the critical index r such that the corresponding

diagonal pivot entry is zero. Ther rf£J and the matrix

Mpy; My
HtJ urr

is singular. Consequently the set of arcs in JU{r } must contain a cycle
by Theorem 7. Since J contains no transshipment of flows, Lemma 16 implies

that the current critical value of A is nonpositive. In other words, the

-algorithm will terminate without performing further pivots. Q. E. D.

T ——————
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Summarizing the discussion, we now present the promised algorithm
for solving the linear complementarity problem (2) arising from the

spatial equilibrium model. The algorithm is a straightforward specialization
of Algorithm 2 to this application.

The Algorithm,
Step 0 (Initialization) Let J = §. Determine

x-m[-(aa-aa-bca’):aﬁa,a,aev}.

If A <0, terminate. A solution is given by x = 0, Otherwise, let
k = (o,8) be a maximizing arc., Let

J'= |3 ifk £J
Ik} ifk€ET.

Step 1 (Search for descendents) Identify the descendents of the nodes
o« and B which are incident to arcs in J'. Determine the modified weights
of these descendents (including the nodes o and B as well). Compute the

-1
%
vector HJ'J’MJ'k according to Proposition 7%,

Step 2 (Updating of basic components) Set

@ @)= [G . G/ 6 +87) ke
@ » ) £k €y

* The set J' may be a forest but not a tree. The proposition is nevertheless
applicable because obviously, (ME} J'MJ'k)j = Q if the arc j is not connected

to k. Hence we need to compute only those components which are connected
to k.

| Y g o




(SJi 2 &Jl) » (SJI t ] iJl) o’ M\;'J'MJ'k(sk ? ak) .
Step 3 (Updating of basic index set) Set

J= [JU{Kk} ifk €

IN{k} 1fk €J
Step 4 (Updating of nonbasic components) Let I = ook Compute
®p > O = @y » 9 - M Gy, dp -

Step 5 (Ratio test) Determine

A -m{m{.‘iiilii : §1>0 , 1€1}, m{-ijlﬁj : Py <0, jJ€J}}.

0
4y

If A <0, terminate., A solution is given by (&) = (
J

) « Otherwise, let

k = (a,8) be a maximizing arc. Go to Step 1.

According to the third remark at the end of Sectiom 2, the proposed
algorithm will compute a set of equilibrium flows in a finite number of

steps.

Some Computational Remarks. The updating of the nonbasic components in
Step 4 is easy to carry out. Indeed, for each nombasic arc, it suffices

to determine the basic arcs which are adjacent to it. This provides an
efficient way to multiply the product HIJ’(&J , P ;) from which the updating
can be achieved trivially. Furthermore, the relationship

(ii ’ 51) + (iil ’ 51') £ (ci + ci' ’ 2P£)
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for nonbasic arcs i = (a,8) and i' = (8,a), can be used to reduce the
computational effort in this step. The ratio test in Step 5 (and in Step 0
as well) can be somewhat simplified by noting that ‘.‘1 <0 = ‘Iz' <O04f ¢
and 1' are as just mentioned, This implication implies that in carrying
out the test, at most one of the two arcs i and i' need to be considered.
Finally, the various resuits established in this section guarantee that a

number of arcs will not become basic at the next iteration. They can

s A T e —np———
s ? 3

thus be ignored in the test.




5. COMPUTATIONAL EXPERIENCE

We have implemented the proposed algorithm for solving some randomly
generated problems. The data are generated as follows: The ‘L and bi are
random numbers lying in the interval [0,50] and [0,20] respectively. The
cost °1j is given by cu = di + dj where di is equal to 10 if i belongs
to & certain random index set and is a random number in [0,20] otherwise.
The reason for generating the costs in this way is to ensure that the
triangle inequality will be satisfied. The code is written in FORTRAN and
the runs are performed on a DEC-20 computer at Carnegie-Mellon University.
The results are summarized in the table below. The times are exclusive

of input and output.

# nodes # arcs # basic arcs # pivots CPU time time/pivot
(in sec.) (in sec.)

40 1,760 24 56 15.850 0.28
80 6,320 45 65 82.456 1.27
120 14,280 70 176 732,421 4.16
160 25,440 108 420 5,682.318 13.53

Notice that the number of arcs is equal to N(N-1) where N is the
number of regions. Moreover, the number of basic arcs can not exceed N-1.

Looking at the CPU times, one could argue that the proposed algorithm
is perhaps not performing as efficiently as it should be. However, one has
to realize that although these problems could be considered as having a

sparse matrix (the arc-arc matrix of an N-node problem has 22{(11-1)2 nonzero

entries, i.e., density = 3;22 %) , they are still too big for the direct
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application of most currently existing general-purpose quadratic _ptogramins
and/or linear complementarity algorithms. These times are roughly
proportional to lo-sxna » @ figure which is really not big in comparison
with the size of the arc-arc matrix. The performance of the algorithm

can be further improved by taking advantage of an important conmsequence

of the result concerning the no transhipment of flows. This consequence
enables one to fix at least half of the flow variables at the value 0 and
thus reduces the size of the problem by at least one half. It is stated

and proved in the theorem below.

Theorem 17. If a, - ‘B + ca’> 0, then the arc k = (@ ,8) €J in each

iteration.

Proof. Since there is no transhipment of flows, it is easy to see that
the basis matrix HJJ is nonnegative in each iteration. If such an arc k
were in J at some iteration, them since complementarity is presexved in

the algorithm, we would have

0=q +ip, +M x>0

which is a contradiction. Q. E. D.

It should be pointed out that this result has not been incorporated
in the coding of the algorithm

Conclusion. In this paper, we have proposed and implemented a parametric
linear complementarity approach for the computation of equilibrium prices
in an economic spatial model addressed by Glassey and others. In essence,

the proposed algorithm i{s a specialized version of the parametric principal




pivoting algorithm applied to solve the linear complementarity problem
arising from the model. Like Glassey's algorithm, ours cam be stated
and implemented based entirely on the underlying digraph of the model.

As mentioned in the introduction, the model treated in this paper
is a simplification of some other models of a more general nature. In
the near future, we plam to extend the technique used here to treat
various generalizations of the model and will report our findings
elsewhere.




APPENDIX

We shall show in the sequel that Glassey's Algorithm A1 [4] fails to
achieve internal equilibrium in certain situations. Following the notations

in the reference, suppose (e,,1,) is an incoming arc, and E = {‘1"""1:}
and I = [i,.....in} are the coalitions containing e, and i, respectively.

Furthermore, for simplicity, we suppose that there is no outgoing arc.

Thus, for the new prices 5e and 51 of nodes ejezand i,€1
3 b |
calculated according to the algorithm, we have i
Pp. =p +8 ,p, =p, +8 andp +c -p, =0
ej e.1 e 1j i.j i e 3111 :I., J

where pej and pij are respectively the prices of the nodes ‘j €E and ij €1
- |
before updating. 1 |

Since vriginally, respective nodes in E and I have achieved internal

equilibrium, we have for all k # £

{
p. +c -p, 20 and p, +c -p;, 20
R TR, A Y
which imply
p. +c -p. +8 -8 >0 and p, +c -p, +8, -8 >0 1
SREICTNS T NPERCL T Q" Y % & LS
which in turn imply that the new coalition consisting of E and I will have i
internal equilibrium within themselves.
Now if the new coalition formed by EUI attains internal equilibrium,
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then we have for k = 1,,.,,m and { = s .

P +¢ -p, 20 and p, +c -p. >0
Sl gy g o M e
or equivalently,
p. +¢ -p, +8 -8 >0 aad p,  +¢ -p, +8 -8 >0
e .kiL 1" e i 14' "L.k e i e

But 61 - ae = p"1 + ce1’_1 - p11 « (See [4]). Hence
;

+Pg +C,4)20

(p, +c +p,) - (p
by o e 4

b B

for allk =1,...,m; £ = 1,...,n.

It is now obvious that the above inequality does not necessarily hold
in general, and thus, internal equilibrium is not gusranteed.

Similarly, it can be shown that if an arc goes out of the basis
simultaneously, then the same situation occurs.

In what follows, we provide a counterexample showing how the algorithm
fails to maintain internal equilibrium.

The data are given as follows (for seven nodes):

a = 19.481866, a, = 60.873993, a = 10.845196, a = 6.172308, a. = 63.791228,

5

‘6‘ = 67.071617, a, = 37.919311; l:»1 = 7,.324636 , ﬂ, = 0.136526, b, = 3.225784,

2
32 = 0.310002 , b3 = 1.884832 , 53 = 0.530554, b4 = 7.132555 , B, = 0.140202,

bS = 0.487533 , ’S = 2,051144, b6 = 3.922178 B = 0.254960, b7 = 5,383146,

B; = 0.185765 , and c, , = |£-3] = ¢y for all 1,3.

We choose (e,i) to become basic whenever c‘i

= min {pi+c

1,3 o
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Following the procedure described by Glassey [5], we have:

Cycle 1. Form coalition c1 = (4 6)

Cycle 2. Form coalition C, = (3 5) }
Cycle 3. Form coalition 03 = (12)
Cycle 4. Form new coalition cz = (735). Step 2c gives 035 = 104.497 and

Xy = 2.322544. By algorithm, no arc is going out.
Cycle 5. Form new coalition C, =C, Uc2 = (34567). Step 2 gives new

equilibrium prices as: 57 = 49,.516340, 55 = 52.516340, 55 = 51.516340,
54 = 50.516340, 53 = 49,516340. Ster 2c gives 9,5 = 34.600461,

. 035 = 109.527072 and 9,6 = 8-257801 and X,s = 2.506109. By

algorithm, no arc is going out.
: Notice that at this point, internal equilibrium is not achieved in
-+ coalition 04 = (34567).

] PO




A AT DT

5.

10.

41

REFERENCES

R. W. Cottle, "The principal pivoting method of quadratic programming,'

in G. B. Dantzig and A. F. Veinott, Jr., eds., Mathematics of the

decision sciences, Part I (Am. Math. Soc., Providence RI, 1968)
148-162.

R. W. Cottle, "Monotone solutions of the parametric linear complementarity
problem,"” Mathematical Programming 3 (1972) 210-224.

R. W. Cottle, "Manifestations of the Schur complement," Linear Algebra
and its Applications 8 (1974) 189-211.

G. B. Dantzig. Linear Programming and Extensions (Princeton University
Press, New Jersey 1962).

C. R. Glassey, "A quadratic network optimization model for equilibrium
single commodity trade flow," Mathematical Programming 14 (1978)
98-107.

C. R. Glassey, Private commmication (Nov. 1978).

R. L. Graves, "A principal pivoting simplex algorithm for linear and
quadratic programming," QOperations Research 15 (1967) 482-494.

A. S. Householder, The theory of matrices in numerical analysis
(Dover Publications, Inc. New York 1964).

I. Kaneko, "A linear complementarity problem with an n by 2n P-matrix,”
Mathematical Programming Study 7 (1978) 120-141.

I. Kaneko, "A mathematical programming method for the inelastic analysis
of reinforced concrete frames," to appear in Intermational Journal
for Numerical Methods in Engineering.

e O W




11.

12,

13.

14,

13,

16.

42

J. S. Pang, "A new and efficient algorithm for a class of portfelio
Selection problems," to appear in Operations Research.

J. S. Pang, "A parametric linear complementarity technique for optimal
portfolio selection with a risk-free asset," submitted for publication
in Operations Research.

J. S. Pang, I. Kaneko and W. P. Hallman, "On the solution of some

(parametric) linear complementarity problems with applications to
portfolio selection, structural engineering and actuarial
graduation," to appear in Mathematical Programming.

J. Polito, Jr., "Distribution systems planning in a price responsive

envirom‘m:,".rh.n. dissertation, School of Industrial Engineering,

Purdue University (August 1977).
P. A. Samuelson, "Spatial price equilibrium and linear programming,"
American Economic Review 42 (1952) 283-303.

T. Takayama and G. G. Judge, Spatial and temporal price and allocation
models (North-Holland, Amsterdam, 1971).




Unclassified

IGSNRI LY L AINPILA IR OF THIS Paue (Seen Uate anieres)

{ AEPORT COCUMENTATION m;z | | el e Sy

NOJ4 3. RECIPIENT'S CATALOG NUKMER

- e A .

4 PARAMETRIC LINEAR COMPLEMENTARITY TECHNIQUE
FOR THE COMPUTATION OF EQUILIBRIUM PRICES IN A

1 _SINGLE _GOMMODIT‘I §_PA‘.I.‘IAI. MODEL . 3

A A e, W

December 1978 it

8. PURFORMING ORG. REPCRT NULBCA
M.S.R.R. 427

' §. TYPE OF REPORT & AEMOD COVERED
{
!
|
|

Vs - A

M-.' Au-uum“ :-. CONTR -] v NUM 7]
7} Jong-Shi ng ' o 4
"f Patrick |5 [| wigg14-75-c-go21 /

¥, ’MJC".

ATAFORMING ORGANIZATION NAME AND AQDRESS

1

i Graduate School of Industrial Administruio/n ““'"‘&w
i

i

Carnegie-Mellon University NR 047-048 et el
Pittsburgh, Pennsylvania 15213
I SINTRSLL. AT IFTICE nAnd AND ACONESS
' Personnel and Training Research Programs
' Office of Naval Research (Code 458)
. Arlington, Virginia 22217 i
T MONITORING <G NAME & AOUAKSM Ottieny | 18- SECURITY CLABS. (of thia .port)

@ /-ft’ [ Unclassified
1 :

enmscnme? ss. OZC'. ‘Sﬂ'lc;\ﬂa’ll USWNGRALIG
s g scnedy

VIS

e B ) N A = oo
C1g J'STABUTON STATEMENT (of :hte Repeet)

A
}.-—. - -

Approved for release; distribution unlimited.

. -
®

s

‘S, SUPSLMENTARY NOTES

R e L

.« sswngens il e

|3 KEY WOROS (C. an wide i ol (dencily by Moes sumber)

parametric linear complementarity, equilibrium prices, spatial model, 3
i efficient algorithm, arc-arc weighted adjacency matrix, compu:auonnl results.

|
{ ;

« S e
MM:?(“- aide it 0rp and Idencily oy biech mumver) i

This paper presents a parametric linear gomplementarity technique for the
computation of equilibrium prices in a single commodity spatial model. We
first reformulate the model as a linear complementarity problem and then upplyJ
the parametric principal pivoting algorithm for its solution. This reformula-;
tion leads to the study of an “‘arc<arc weighted adjzcency matrix**“associated
with a simple digraph having weights on the nodes. Several basic properties |

of such a matrix are derived. Using these prcpcrties, we show how the para-
metric principal pivoting algorithm cawb fted-tn this applica-

i e

5

{

\

e o SR oo

cAM < coriom o7 G oy eet Daa e ome computacional experience. \

$/N 0102-014- 6001 '

tiam 7




